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Abstract

The efficiency and accuracy of grid movement methods for a typical fluid–structure interaction configuration is

investigated. The set-up consists of a thin elastic structure including one rotational degree of freedom fixed in a laminar

channel flow. Two different cases are considered, i.e., small and large structural deformations. The comparison is

carried out by using two algebraic methods, linear and transfinite interpolation, and two elliptic solution strategies also

providing boundary orthogonality. A reference solution is obtained from a mixed approach. The evaluation of

efficiency and accuracy is based on computation times, number of coupling steps, structural displacements and

swiveling frequencies. All mesh movement techniques are employed in the frame of a partitioned solution procedure

involving the block-structured finite-volume flow solver FASTEST, the finite-element structural solver FEAP, and the

coupling interface MpCCI.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The choice of an appropriate grid movement concept for fluid–structure interaction computations depends on many

different aspects. Not only the efficiency of the grid generation process for itself has to be taken into account, but also

the required coupling strategy to cope with the investigated physical phenomenon.

Coupled fluid–solid problems can be divided into different categories. Either the mesh topology changes during the

computation (e.g., additional interaction of solid walls) or it remains unchanged. While in the first case a totally new re-

meshing is required, the second case allows for a choice between different existing grid movement strategies.

Applications with topology changes have been barely investigated yet, but there exist several grid movement methods

for the second case which will be investigated in this work.

In the articles of Löhner and Yang (1996) and Longatte et al. (2003) modified Laplacian operators are used for non-

structured grids with special treatment of near wall regions involving parameters for distance estimation. Albert and

O’Neill (1986) employed a transfinite mapping strategy with bilinear and trilinear projectors for phase change analysis.

The spring analogy is another technique often used. Here, the mesh nodes are connected through different kinds of
e front matter r 2007 Elsevier Ltd. All rights reserved.
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springs, mostly linear. Farhat et al. (1998) applied longitudinal and torsional springs and Murayama et al. (2002)

included also special wall treatment. In the linear elasticity approach the spatial fluid domain is assumed to be an elastic

continuum. Stein et al. (2003) employed this method incorporating a re-meshing algorithm for unstructured grids and

large deformations. Baker (2001) also used re-meshing. In Bar-Yoseph et al. (2001) the fluid mesh is considered as a

pseudo-non-linear elastostatic problem applied to structured and unstructured grids.

Many of the mentioned algorithms can be applied to structured and unstructured grids within a partitioned solution

procedure. In case of monolithic solution strategies, solving the coupled problem simultaneously, an iterative grid

smoothing method will further complicate the numerical solution process. Generally speaking, the more accurate and

universally applicable the method, the more complex and time-consuming is the computation and implementation.

Systematic comparisons of grid movement techniques, like the spring analogy and linear elasticity, are given in Yang

and Mavriplis (2005).

In the present paper we consider approaches for the special case of block-structured grids. In contrast to unstructured

grids (often using advancing-front, octree or Delaunay-based methods), the mesh topology has to be kept unchanged

within one structured block. As further demands, boundary grid points should not move along edges and the whole

mesh has to be capable of large deformations without grid folding and extreme cell distortions. We systematically

compare several algebraic and elliptic methods show their advantages and disadvantages according to accuracy,

robustness and computation times for the flow solver and mesh generation procedure.
2. Governing equations

We consider a problem domain O consisting of a fluid part Of and a solid part Os. For the fluid domain part Of , we

assume a flow of an incompressible Newtonian fluid. In this case the basic conservation equations governing transport

of mass and momentum for a fluid control volume Vf with surface Sf are given byZ
Sf

ðv� vgÞ � ndSf ¼ 0, (1)

q
qt

Z
Vf

rf vdVf þ

Z
Sf

rf ðv� vgÞðv � nÞdSf ¼

Z
Vf

rf f f dVf þ

Z
Sf

T f � ndSf , (2)

where v is the velocity vector with respect to Cartesian coordinates x, t is the time, rf is the fluid density, n is the

outward normal vector and f f are external volume forces (e.g., buoyancy forces); vg is the velocity with which Sf may

move (grid velocity) due to displacements of solid parts. The Cauchy stress tensor T f for incompressible Newtonian

fluids is defined by

T f ¼ mf ðrvþ rvTÞ � pI , (3)

with the pressure p, the dynamic viscosity mf , the vector gradient r and the identity tensor I .
For the structure we denote a material point in the reference configuration as X whose position in the current

configuration is given by

x ¼ vðX ; tÞ. (4)

The displacements are evaluated by

u ¼ x� X . (5)

For more details see Truesdell and Noll (2004) and Ogden (1997). The basic balance equation for momentum for the

solid domain Os can be written as

r � ðFsS
T
s Þ þ rsf s ¼ rs €v, (6)

where €v ¼ q2vðX ; tÞ=qt2 is the acceleration, Ss denotes the second Piola–Kirchhoff stress tensor, rs is the density of the

solid, and f s are external volume forces acting on the solid (e.g., gravitational forces). Fs ¼ qv=qX denotes the

deformation gradient.

In the present investigation we consider the Saint Venant–Kirchhoff material law

Ss ¼ ls trE I þ 2msE, (7)

with the Green–Lagrangian strain tensor

E ¼ 1
2
ðFT

s Fs � IÞ (8)
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as kinematic property. ls and ms are the two Lamé constants that can also be expressed with Young’s modulus Es and

Poisson ratio ns by

Es ¼
msð3ls þ 2msÞ

ls þ ms

and ns ¼
ls

2ðls þ msÞ
. (9)

The problem formulation has to be closed by prescribing suitable boundary and interface conditions. On solid and

fluid boundaries Gs and Gf , standard conditions as for individual solid and fluid problems can be prescribed. For the

velocities and the stresses on a fluid–solid interface Gi, we have the conditions

v ¼ _v ¼ vb and T f n ¼ Tsn, (10)

where vb is the velocity of the interface and Ts ¼ FsSsF
T
s = detFs is the Cauchy stress tensor.
3. Numerical fluid–structure coupling scheme

The discretization of the problem domain is based on a block-structuring technique. Fluid and solid parts are

assigned to different blocks. Solid blocks are treated by the finite-element solver FEAP, see Taylor (2002). For the fluid

blocks, which can be defined as moving or fixed, the parallel multigrid finite-volume flow solver FASTEST is employed,

see Schäfer et al. (2001). Both solvers involve second-order spatial discretizations and fully implicit second-order time

discretizations.

For the fluid–structure coupling, an implicit partitioned approach is employed. In Fig. 1 a schematic view of the

iteration process is given. After the initializations, the flow field is determined in the actual flow geometry. From this,

the friction and pressure forces on the interacting walls are computed. These are passed to the structural solver as

boundary conditions (it is used a conservative interpolation method with four weights for each quadrilateral coupled

element; see Fraunhofer SCAI, 2004). The structural solver computes the deformations (interpolations of displacements

are non-conservative; see Fraunhofer SCAI, 2004), with which then the fluid mesh is modified by one of the mentioned

grid movement techniques. Afterwards the flow solver is started again. For the arbitrary Lagrangian–Eulerian

description, see Donea et al. (2004), a discrete form of the space conservation law

d

dt

Z
Vf

dV ¼

Z
Sf

vgndS (11)
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Fig. 1. Flow chart of coupled solution procedure.
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is taken into account in order to compute the additional convective fluxes in (1) and (2) for blocks that are moving. This

is done via the swept volumes dVc of the control volume faces for which one has the relation (Demirdz̆ić and Perić,

1988):

X
c

dVn
c

Dtn

¼
Vn

f � Vn�1
f

Dtn

¼
X

c

ðvgnSf Þ
n
c , (12)

where the summation index c runs over the faces of the control volume, the index n denotes the time level tn and Dtn is

the time step size. By this way interface displacements enter the fluid problem part in a manner strictly ensuring mass

conservation.

The fluid–structure interaction iteration loop is repeated until a convergence criterion �FSI is reached, which is defined

by the change of the mean displacements

1

N

XN

k¼1

kuk;m�1 � uk;mk1

kuk;mk1
o�FSI, (13)

where m is the FSI iteration counter, N is the number of interface nodes, and k � k1 denotes the infinite norm. Note that

an explicit coupling method would be obtained, if only one FSI iteration is performed.

The data transfer between the flow and solid solvers within the partitioned solution procedure is performed via an

interface realized by the coupling library MpCCI [see Fraunhofer SCAI (2004)] that controls the data communication

and also carries out the interpolations of the data from the fluid and solid grids. More details are given in Schäfer et al.

(2006).

Various test computations have shown that the coupling scheme is rather sensitive with respect to the deformations in

the first FSI iterations. Here, situations that are far away from the physical equilibrium can arise, which may lead to

instabilities or even the divergence of the FSI iterations. In order to counteract this effect an underrelaxation is

employed. The actually computed displacements uact are (linearly) weighted with the values uold from the preceding

iteration to give the new displacements unew:

unew ¼ aFSIuact þ ð1� aFSIÞuold, (14)

where 0oaFSIp1. Note that the underrelaxation does not change the final converged result.
4. Grid movement techniques

The method for moving the grid in the fluid domain constitutes an important component of the coupled

solution procedure, in particular in the case of larger structural deformations. Besides the requirements that no

grid folding occurs and that the mesh exactly fits the moving boundaries one has to take care that distortions of

control volumes are kept to a minimum in order not to deteriorate the discretization accuracy and the efficiency of the

solver.

We consider algebraic and elliptic mesh generation techniques for the grid movement involving either boundary

orthogonality or grid spacing control. Additionally, a mixed approach combines both capabilities. To simplify the

presentation we describe the approaches for a single two-dimensional (2-D) structured block surrounded by four

boundary curves I–IV (see Fig. 2). The generalization to the three-dimensional (3-D) case and to multiple blocks is

straightforward.

For a structured 2-D block, there is a one-to-one mapping xðx; ZÞ ¼ ðxðx; ZÞ; yðx; ZÞÞ of the physical coordi-

nates x ¼ ðx; yÞ to computational coordinates ðx; ZÞ where, without loss of generality, 0pxp1 and 0pZp1. In each

FSI iteration the coordinates of the interior grid points have to be computed from the given boundary point

distribution.

First, we consider algebraic approaches. A very simple method is obtained by linear interpolation between opposite

boundaries, e.g., boundary I–III. Let the distances between neighbouring grid points be

di;j ¼ kxi;j � xi�1;jk; i ¼ 1 . . .N; j ¼ 0 . . .M, (15)

with the overall lengths

Lj ¼
XN

i¼1

di;j ; j ¼ 0 . . .M. (16)
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The normalized lengths for the parametrization are

L̄i;j ¼
1

Lj

Xi

m¼1

dm;j ; i ¼ 1 . . .N; j ¼ 0 . . .M; L̄0;j ¼ 0. (17)

The grid point coordinates in the domain are then computed by

xi;j ¼ ðxN;j � x0;jÞ � L̄i;j þ x0;j ; i ¼ 0 . . .N ; j ¼ 0 . . .M. (18)

Another algebraic method is the linear transfinite interpolation (TFI), where the interior grid points are computed by

xðx; ZÞ ¼ ð1� ZÞxðx; 0Þ þ Zxðx; 1Þ þ ð1� xÞxð0; ZÞ þ xxð1; ZÞ � x½Zxð1; 1Þ þ ð1� ZÞxð1; 0Þ�

� ð1� xÞ½Zxð0; 1Þ þ ð1� ZÞxð0; 0Þ�. (19)

For boundary movement a very efficient and simple algebraic method is employed. The cubic polynomial

interpolation with normalized parameter L̄, see Eq. (17), combines two given boundary points xðL̄ ¼ 0Þ and xðL̄ ¼ 1Þ

and also involves their corresponding tangents xtðL̄ ¼ 0Þ and xtðL̄ ¼ 1Þ:

xðL̄Þ ¼ a3L̄
3
þ a2L̄

2
þ a1L̄þ a0; 0pL̄p1, (20)

with the coefficients

a3 ¼ 2xð0Þ � 2xð1Þ þ xtð0Þ þ xtð1Þ; a2 ¼ �3xð0Þ þ 3xð1Þ � 2xtð0Þ � xtð1Þ, (21,22)

a1 ¼ xtð0Þ; a0 ¼ xð0Þ. (23,24)

The tangents xt are chosen to be perpendicular to boundary surfaces.

We now turn our attention to the elliptic methods. We adopt an approach described in Spekreijse (1995) which is

based on the following (elliptic) Poisson equation for the physical coordinates:

axxx � 2bxxZ þ cxZZ þ ðaP1
11 � 2bP1

12 þ cP1
13Þxx þ ðaP2

11 � 2bP2
12 þ cP2

13ÞxZ ¼ 0, (25)

with the control functions

P11 ¼
1

sZtx � sxtZ

tZ �sZ

�tx sx

" #
sxx

txx

( )
, (26)

P12 ¼
1

sZtx � sxtZ

tZ �sZ

�tx sx

" #
sxZ

txZ

( )
, (27)

P13 ¼
1

sZtx � sxtZ

tZ �sZ

�tx sx

" #
sZZ

tZZ

( )
, (28)

and the abbreviations

a ¼ xZxZ þ yZyZ; b ¼ xxxZ þ yxyZ; c ¼ xxxx þ yxyx. (29)

The indices x and Z denote the corresponding derivatives. Fig. 3 shows how the mapping between the computational

space and the physical domain is performed through the parameter space ðs; tÞ that can be used to control the quality of

the mesh.
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We consider a parameter space with sðIÞ ¼ 0, sðIIIÞ ¼ 1, tðIVÞ ¼ 0, and tðIIÞ ¼ 1. The point distribution along sðIIÞ,

sðIVÞ, tðIÞ, and tðIIIÞ arises from linear interpolation along these boundaries involving the normalized arc length. The

inner parameter domain is adapted by solving simultaneously:

s ¼ sðIVÞð1� tÞ þ sðIIÞt, (30)

t ¼ tðIÞð1� sÞ þ tðIIIÞs. (31)

Next, the control functions Pi
11, Pi

12, Pi
13, i ¼ 1; 2 can be computed according to Eqs. (26)–(28) and remain unchanged

during the solution of (25). The derivatives in Eq. (25) are approximated by central differences (CDS) and a Picard

iteration process is used for linearization:

ak�1xk
xx � 2bk�1xk

xZ þ ck�1xk
ZZ þ ða

k�1P1
11 � 2bk�1P1

12 þ ck�1P1
13Þx

k
x þ ða

k�1P2
11 � 2bk�1P2

12 þ ck�1P2
13Þx

k
Z ¼ 0.

(32)

In each step this equation system is solved by the GauX–Seidel algorithm for the unknown grid coordinates xk
i;j and yk

i;j ,

i ¼ 1 . . .N � 1, j ¼ 1 . . .M � 1. The Picard iteration process is repeated as long as the convergence criterion �GRID is

satisfied: PN
i¼0

PM
j¼0kx

act
i;j � xold

i;j k1PN
i¼0kx

act
i;0 � xact

i;Mk1 �
PM

j¼0kx
act
0;j � xact

N ;jk1
o�GRID. (33)

Within the FSI iteration process the coordinates of the previous iteration are applied as initial values. The whole

solution algorithm, which is summarized schematically in Fig. 4, operates like a mesh smoother. In any case a boundary

conforming mesh without grid folding results for which the interior grid point distribution is a good reflection of the

prescribed boundary grid point distribution.

The method described can be extended according to Spekreijse (1995) with respect to boundary orthogonality. First,

a boundary conforming grid without grid folding is computed applying the elliptic method explained above. For this

mesh, we consider the Laplace equations:

Ds ¼
q2s

qx2
þ

q2s

qy2
¼

1

J
asx �

1

J
bsZ

� �
x
þ �

1

J
bsx þ

1

J
csZ

� �
Z
¼ 0, (34)

Dt ¼
q2t

qx2
þ

q2t

qy2
¼

1

J
atx �

1

J
btZ

� �
x
þ �

1

J
btx þ

1

J
ctZ

� �
Z
¼ 0, (35)

with the abbreviations

a ¼ xZxZ þ yZyZ; b ¼ xxxZ þ yxyZ; c ¼ xxxx þ yxyx; J ¼ xxyZ � xZyx

in combination with the Neumann boundary conditions

qs

qn
¼ 0;

qt

qn
¼ 0, (36)
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where n ¼ ðn1; n2Þ is the outward unit normal vector. Eqs. (34) and (35) involve a divergence expression that allows for

applying the finite-volume method:Z
O

1

J
ðasx � bsZÞ

� �
x
þ

1

J
ð�bsx þ csZÞ

� �
Z
dxdZ ¼

Z
qO

1

J
ðsxðan1 � bn2Þ þ sZð�bn1 þ cn2ÞÞ

� �
ds ¼ 0, (37)

Z
O

1

J
ðatx � btZÞ

� �
x
þ

1

J
ð�btx þ ctZÞ

� �
Z
dxdZ ¼

Z
qO

1

J
ðtxðan1 � bn2Þ þ tZð�bn1 þ cn2ÞÞ

� �
ds ¼ 0, (38)

where the integration is done for a control volume O and its boundary qO with the line element ds, respectively.
The computational domain is discretized by unit control volumes for inner points and half control volumes for

boundary points, leading to one system of linear equations for s and t, respectively. Since the boundary conditions (36)

transform to

1

J
ðsxðan1 � bn2Þ þ sZð�bn1 þ cn2ÞÞ ¼ 0, (39)

1

J
ðtxðan1 � bn2Þ þ tZð�bn1 þ cn2ÞÞ ¼ 0, (40)

these terms have to be set to zero for the desired orthogonal grid lines at boundaries. During the solution procedure,

boundary points are moved along edges (sðIVÞ; sðIIÞ) until convergence is reached. These points are combined by cubic

Hermite interpolation:

s ¼ sðIVÞð1þ 2tÞð1� tÞ2 þ sðIIÞð3� 2tÞt2; 0ptp1, (41)

t ¼ tðIÞð1þ 2sÞð1� sÞ2 þ tðIIIÞð3� 2sÞs2; 0psp1. (42)

Since the interpolation is given analytically, the Jacobian matrix and its inverse can easily be calculated and solved

simultaneously for s and t by the Newton algorithm. As initial condition the parameter space values from the first

elliptic solution are applied, leading to convergence after one or two Newton iterations.

This way we have obtained a new parameter space to compute the desired control functions for boundary

orthogonalization. Finally, the desired grid is computed by solving the elliptic equations once again. The main steps of
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the elliptic-orthogonal method can be summarized as follows:
(i)
 calculate boundaries by interpolation, update moved coupled edges, fixed edges remain unchanged;
(ii)
 calculate parameter space by normalized arc length;
(iii)
 determine control functions P11;P12;P13 with CDS approximation;
(iv)
 solve elliptic equations, according to Fig. 4;
(v)
 solve Laplace equations for s and t to get new boundary point distribution;
(vi)
 perform cubic Hermite interpolation for s and t by Newton’s method;
(vii)
 determine control functions P11;P12;P13 with CDS approximation;
(viii)
 solve elliptic equations once again, according to Fig. 4.
The advantages of this approach lie in the great flexibility allowing independent orthogonalization of all four

boundaries while keeping the edge point distribution unchanged. Furthermore, the method is very robust and may even

work in case of rather large deformations.

5. Test configuration and simulation parameters

Fig. 5 shows the test configuration including an elastic structure and the fluid domain decomposition into structured

blocks (blocks 1 and 10 are fixed, blocks 2–9 are able to move). The fluid with density rf ¼ 1000 kg/m3 and dynamic

viscosity mf ¼ 0:5375 kg/ms enters the channel uniformly with 2m/s. The structural configuration is presented in Fig. 6.

It is divided into two regions with different material properties. The transition from small to large deformations is

carried out by decreasing Young’s modulus of the rear part. The kinematic motion consists of a superimposition of free

rotation around the point of origin and elastic deformations.

The structure is discretized by 500 linear solid hexahedrons with an enhanced strain formulation to prevent locking

effects, see Taylor (2003). For the fluid domain four refinement levels are considered, i.e., 1120, 4480, 17 920 and 71 680

control volumes (discretization levels 1 to 4) for all grid movement techniques and all deformations. The finest mesh,

286 720 control volumes (discretization level 5), is used for reference purpose. The time step size is 0.002 s and aFSI is 0.5
for all computations. The fluid field properties are solved up to a convergence criterion of 1� 10�4. The residual

normalization is performed by summing up all residuals and dividing by the overall incoming flux.

Fig. 7 illustrates the concept of boundary movement. First, the structural displacements are updated for the coupled

surfaces. Afterwards the block edges are interpolated between the coupling areas and the fixed domains. Finally, the

inner parts are adopted by smoothing techniques or interpolation.

For the reference case (I), blocks five and six are divided into two regions. For region (b), a linear interpolation is

employed along orthogonal lines obtaining complete boundary control, i.e., exact orthogonality combined with exact

grid spacing determination. Region (a) and all other blocks are smoothed by the elliptic method, except blocks 3 and 8

which occupy only a very thin strip for which cubic polynomial interpolation can be applied.

For the elliptic, orthogonal and TFI methods (II) the blocks are generated by corresponding techniques. The

boundary discretizations are equal for all three cases. The method (III) interpolates all blocks and edges linearly.

6. Numerical results

The results are presented based on structural displacements, swiveling frequencies, number of coupling steps,

robustness of the mesh movement methods and their computational effort. First, small deformations are considered
1
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achieved with high Young’s modulus for the rear part, see Fig. 6, afterwards, a case with smaller Young’s modulus and

large deformations is studied.

6.1. Small deformations

Fig. 8 (left) shows the temporal development of structural displacements of front and rear points (A, B). The

oscillations are non-linear with constant amplitudes. Fig. 8 (right) illustrates the overall deflection. The motion during

one period is represented, e.g., by four numbered superimposed deformations.
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Fig. 9. Amplitudes of rear Point A (left) and swiveling frequencies (right), small deformations.
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Fig. 10. Computation times for the fluid domain (left) and grid movement (right), small deformations.
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In Fig. 9 (left) the amplitudes of the rear point A is shown when using the different mesh moving techniques and

different grid levels. The reference values are obtained with the mixed method. The corresponding values for grid level 5

are assumed to be the most accurate ones. This method reproduces a swiveling motion even for the coarsest mesh. The

best result is achieved with the orthogonal method followed closely by the elliptic and the TFI. The linear interpolation

produces most deviations. The same statement is valid for the swiveling frequencies, shown in Fig. 9 (right).

Fig. 10 (left) compares the computation times for the flow solver for one period (the computation times for the

structural part and the data exchange are for all movement techniques nearly the same and are negligibly small. Thus,

the overall computation time is the sum of flow solver time and grid movement time). As can be seen, the elliptic

approaches are similar, the TFI and linear interpolation are a little faster. Fig. 10 illustrates the computation times for

the grid movement procedure. Up to discretization level 3 all methods remain reasonably efficient but then computation

times for the orthogonal approach increase dramatically. The other elliptic methods also lead to more computational

effort. However, the algebraic methods require negligible grid generation times.

Table 1 shows the average number of coupling iterations for one period. It can be stated that the amount of coupling

steps is largely independent of the grid size and the grid movement technique.
6.2. Large deformations

Now, large deformations are considered obtained with a small Young’s modulus for the membrane rear part (see

Fig. 6). In Fig. 11 displacements of point A and the corresponding superimposed deformations are presented. During

the motion the structure occupies, for example, the four numbered stages. A comparison with Fig. 8 illustrates the taller
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Table 1

Number of FSI-iterations per period (59 time steps) for small deformations

Discretization level Mixed reference Elliptic Algebraic

Non-orthogonal Orthogonal TFI Linear

1 931 – – – –

2 970 1003 1015 977 873

3 944 986 1108 960 864

4 961 1013 2004 973 892

5 949 – – – –
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Fig. 11. Structural large displacements (left) and overall deformations (right).

Fig. 12. Velocity field (m/s) for large structural oscillations.
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amplitudes and deflections. Fig. 12 shows the velocity field with the structure in a stage corresponding to state 1 in

Fig. 11 (right).

Fig. 13 (left) shows the amplitudes for different grids obtained with the various grid movement methods. The linear

interpolation works up to discretization level 3; however, stronger refinement increases the amplitudes and grid folding

occurs. The TFI leads to completely distorted meshes for all grids. The elliptic approaches give nearly identical results.

The same is valid for the swiveling frequencies which are shown in Fig. 13 (right).

Fig. 14 compares computation times for the flow solver for one period (the computation times for the structural part

and the data exchange are for all movement techniques nearly the same and are negligibly small. Thus, the overall



ARTICLE IN PRESS

1 5

Discretization level

0.032

0.034

0.036

0.038

0.040

0.042

0.044

A
m

pl
itu

de
s 

[m
]

reference
elliptic
elliptic orthogonal
linear

7.00

7.25

7.50

7.75

8.00

8.25

8.50

Fr
eq

ue
nc

ie
s 

[1
/s

]

reference
elliptic
elliptic orthogonal
linear

2 3 4 1 5

Discretization level

2 3 4

Fig. 13. Amplitudes of rear Point A (left) and swiveling frequencies (right), large deformations.

1 2 3 4

Discretization level

1 2 3 4

Discretization level

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

C
om

pu
ta

tio
n 

tim
e 

[s
],

 f
lu

id
 d

om
ai

n

reference
elliptic
elliptic orthogonal
linear

0

3000

6000

9000

12000

15000
C

om
pu

ta
tio

n 
tim

e 
[s

],
 g

ri
d 

m
ov

em
en

t
reference
elliptic
elliptic orthogonal
linear

Fig. 14. Computation times for the fluid domain (left) and grid movement (right), large deformations.

Table 2

Number of FSI-iterations per period (62 time steps) for large deformations

Discretization level Mixed reference Elliptic Algebraic

Non-orthogonal Orthogonal TFI Linear

1 1101 1084 1092 Grid folding 984

2 1129 1118 1149 g.f. 1028

3 1119 1122 1406 g.f. 1034

4 1130 1129 3089 g.f. g.f.

5 1158 – – – –
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computation time is the sum of flow solver time and grid movement time). All elliptic approaches require nearly the

same computational effort for the solution on the finest discretization level. Taking additionally the grid movement

procedure into account, see Fig. 14 (right), the orthogonal method is considerably more time consuming than the other

elliptic methods.

Table 2 shows the average number of coupling iterations for one period. Comparing Tables 2 and 1, one can state

that the behaviour of coupling steps is the same for large and small deformations, i.e., mostly independent of refinement

levels and mesh movement methods.
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Fig. 15. Mesh deformations for the mixed method (left) and pure elliptic method (right) for large structural deflection.

Fig. 16. Mesh deformations for elliptic-orthogonal method (left) and linear interpolation (right) for large structural deflection.
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Fig. 15 shows the moved meshes (discretization level 3) around the structure at a point of large deflection for the

mixed and the pure elliptic methods. It illustrates the good discretization near boundary regions for the mixed method

which is the reason for the good results. This approach combining elliptic and algebraic methods even succeeded for

very huge deformations; however, grid folding may occur near the boundary for locally huge rotations. Employing the

pure elliptic method for all domains, one can recognize the shrunk and stretched grid lines near the structure. Recall

from the previous results that this grid spacing variation hardly influences the accuracy. Note that providing sufficient

refinement, grid folding is impossible with this smoothing technique. Fig. 16 (left) demonstrates the exact

orthogonalization on all boundaries for the elliptic-orthogonal method leading to a very smooth mesh. Comparing

with the pure elliptic method the variation of grid spacing near boundary regions is more distinct. The poor accuracy of

the linear interpolation becomes obvious from Fig. 16 (right). The grid lines at the structural rear part are nearly

tangents. Taller amplitudes obviously will cause grid folding. Since the TFI leads to extremely distorted meshes the

corresponding grid is omitted.

7. Conclusion

Mesh movement techniques for block-structured grids and their influence on laminar fluid–structure interaction

computations have been studied. The investigations have been performed on four successive refined grids for small and

large structural deformations. We considered algebraic, elliptic and mixed approaches.

In case of small deformations the orthogonal method is disadvantageous due to huge grid computation times. The

linear interpolation is also not advisable because of the poor accuracy. Since the TFI provides a similar accuracy as the

elliptic methods, but is much faster, it is the favourable technique for block-structured moving meshes undergoing small

deformations.
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In case of large deformations both algebraic methods failed due to grid folding. The orthogonal approach is not

advisable because of enormous grid computation times. The pure elliptic and the mixed method are recommended.

They are equally time consuming and provide the same accuracy.

For all mentioned grid movement techniques, the algebraic methods [see Thompson et al. (1999)], the pure elliptic

grid generation [see Spekreijse (1995)] and the mixed approach, can also be applied for three-dimensional (3-D)

domains, except the orthogonal method. In future work corresponding investigations will be extended to 3-D cases. Up

to now, the transfinite and the linear interpolations have been implemented into the employed 3-D flow solver. They

show similar behaviour compared to the 2-D case.
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